แบบจำลองอะตอมของดอลตัน
ในปี พ.ศ.2346 (ค.ศ.1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ ชาวอังกฤษได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสาร ก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสาร ประกอบ ซึ่งสรุปได้ดังนี้
1. ธาตุประกอบด้วยอนุภาคเล็ก ๆ หลายอนุภาค อนุภาคเหล่านี้เรียกว่า “อะตอม” ซึ่งแบ่งแยกไม่ได้ และทำให้สูญหายไม่ได้
2. อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน เช่น มีมวลเท่ากัน แต่จะมีสมบัติต่างจากอะตอมของธาตุอื่น
3. สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยาเคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อย ๆ
ทฤษฎีอะตอมของดอลตันใช้อธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่ง แต่ต่อมานักวิทยาศาสตร์ค้นพบข้อมูลบางประการที่ไม่สอดคล้องกับทฤษฎีอะตอมของ ดอลตัน เช่น พบว่าอะตอมของธาตุชนิดเดียวกันอาจมีมวลแตกต่างกันได้ อะตอมสามารถแบ่งแยกได้
แบบจำลองอะตอมของดอลตัน
แบบจำลองอะตอมของทอมสัน
เซอร์ โจเซฟ จอห์น ทอมสัน (J.J Thomson) นักวิทยาศาสตร์ชาวอังกฤษได้สนใจปรากฏการณ์ที่เกิดขึ้นในหลอดรังสีแคโทด จึงทำการทดลองเกียวกับการนำไฟฟ้าของแก๊สขึ้นในปี พ.ศ. 2440 (ค.ศ. 1897) และได้สรุปสมบัติของรังสีไว้หลายประการ ดังนี้
1. รังสีแคโทดเดินทางเป็นเส้นตรงจากขั้วแคโทดไปยังขั้วแอโนด เนื่องจากรังสีแคโทดทำให้เกิดเงาดำของวัตถุได้ ถ้านำวัตถุไปขวางทางเดินของรังสี
2. รังสีแคโทดเป็นอนุภาคที่มีมวล เนื่องจากรังสีทำให้ใบพัดที่ขวางทางเดินของรังสีหมุนได้เหมือนถูกลมพัด
3. รังสีแคโทดประกอบด้วยอนุภาคที่มีประจุลบ เนื่องจากเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้าจากผลการทดลองนี้ ทอมสันอธิบายได้ว่า อะตอมของโลหะที่ขั้วแคโทดเมื่อได้รับกระแสไฟฟ้าที่มีความต่างศักย์สูงจะ ปล่อยอิเล็กตรอนออกมาจากอะตอม อิเล็กตรอนมีพลังงานสูง และเคลื่อนที่ภายในหลอด ถ้าเคลื่อนที่ชนอะตอมของแก๊สจะทำให้อิเล็กตรอนในอะตอมของแก๊สหลุดออกจาก อะตอม อิเล็กตรอนจากขั้วแคโทดและจากแก๊สซึ่งเป็นประจุลบจะเคลื่อนที่ไปยังขั้ว แอโนด ขณะเคลื่อนที่ถ้ากระทบฉากที่ฉาบสารเรืองแสง เช่น ZnS ทำให้ฉากเกิดการเรืองแสง ซึ่งทอมสันสรุปว่ารังสีแคโทดประกอบด้วยอนุภาคที่มีประจุลบเรียกว่า “อิเล็กตรอน” และ ยังได้หาค่าอัตราส่วนประจุต่อมวล (e/m) ของอิเล็กตรอนโดยใช้สยามแม่เหล็กและสนามไฟฟ้าช่วยในการหา ซึ่งได้ค่าประจุต่อมวลของอิเล็กตรอนเท่ากับ 1.76 x 10 8 C/g ค่าอัตราส่วน e/m นี้จะมีค่าคงที่ ไม่ขึ้นอยู่กับชนิดของโลหะที่เป็นขั้วแคโทด และไม่ขึ้นอยู่กับชนิดของแก๊สที่บรรจุอยู่ในหลอดรังสีแคโทด แสดงว่าในรังสีแคโทดประกอบด้วยอนุภาคไฟฟ้าที่มีประจุลบเหมือนกันหมดคือ อิเล็กตรอน นั่นเอง ทอมสันจึงสรุปว่า
“อิเล็กตรอนเป็นส่วนประกอบส่วนหนึ่งของอะตอม และอิเล็กตรอนของทุกอะตอมจะมีสมบัติเหมือนกัน”
หลอดรังสีแคโทด
ปรากฏการณ์ที่เกิดขึ้นในหลอดรังสีแคโทด
รังสีแคโทดเดินทางเป็นเส้นตรงจากขั้วแคโทดไปยังขั้วแอโนด
รังสีแคโทดบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า
“อะตอม เป็นรูปทรงกลมประกอบด้วยเนื้ออะตอมซึ่งมีประจุบวกและมีอิเล็กตรอนซึ่งมี ประจุลบกระจายอยู่ทั่วไป อะตอมในสภาพที่เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ”
แบบจำลองอะตอมของทอมสัน
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
ในปี พ.ศ.2453 (ค.ศ.1910)เซอร์ เออร์เนสต์ รัทเทอร์ฟอร์ด (Sir Ernest Rutherford) ได้ศึกษาแบบจำลองอะตอมของทอมสัน และเกิดความสงสัยว่าอะตอมจะมีโครงสร้างตามแบบจำลองของทอมสันจริงหรือไม่ โดยตั้งสมมติฐานว่า
“ถ้า อะตอมมีโครงสร้างตามแบบจำลองของทอมสันจริง ดังนั้นเมื่อยิงอนุภาคแอลฟาซึ่งมีประจุไฟฟ้าเป็นบวกเข้าไปในอะตอม แอลฟาทุกอนุภาคจะทะลุผ่านเป็นเส้นตรงทั้งหมดเนื่องจากอะตอมมีความหนาแน่น สม่ำเสมอเหมือนกันหมดทั้งอะตอม”
เพื่อพิสูจน์สมมติฐานนี้ รัทเทอร์ฟอร์ดได้ทำการทดลองยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ โดยมีความหนาไม่เกิน 10–4 cm โดยมีฉากสารเรืองแสงรองรับ ปรากฏผลการทดลองดังนี้
1. อนุภาคส่วนมากเคลื่อนที่ทะลุผ่านแผ่นทองคำเป็นเส้นตรง
2. อนุภาคส่วนน้อยเบี่ยงเบนไปจากเส้นตรง
3. อนุภาคส่วนน้อยมากสะท้อนกลับมาด้านหน้าของแผ่นทองคำ
ถ้าแบบจำลองอะตอมของทอมสันถูกต้อง เมื่อยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ นี้ อนุภาคแอลฟาควรพุ่งทะลุผ่านเป็นเส้นตรงทั้งหมดหรือเบี่ยงเบนเพียงเล็กน้อย เพราะอนุภาคแอลฟามีประจุบวกจะเบี่ยงเบนเมื่อกระทบกับประจุบวกที่กระจายอยู่ ในอะตอม แต่แบบจำลองอะตอมของทอมสันอธิบายผลการทดลองของรัทเทอร์ฟอร์ดไม่ได้ รัทเทอร์ฟอร์ดจึงเสนอแบบจำลองอะตอมขึ้นมาใหม่ดังนี้
แบบจำลองอะตอมของรัทเทอร์ฟอร์ท
การอธิบายโครงสร้างอะตอมด้วยแบบจำลองอะตอมของรัทเทอร์ฟอร์ด
จากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดสามารถอธิบายได้ว่า เมื่อผ่านอนุภาคแอลฟาซึ่งมีประจุบวกและมวลมากให้เดินทางเป็นเส้นตรงไปยัง แผ่นทองคำ อนุภาคแอลฟาส่วนมากจะเคลื่อนที่ผ่านไปยังที่ว่างซึ่งมีอิเล็กตรอนเคลื่อนที่ อยู่ แต่อิเล็กตรอนมีมวลน้อยมากจึงไม่มีผลต่อการเคลื่อนที่ของอนุภาคแอลฟา อนุภาคแอลฟาบางส่วนที่เคลื่อนที่ใกล้นิวเคลียสทำให้เบี่ยงเบนออกจากที่เดิม และอนุภาคที่กระทบกับนิวเคลียสซึ่งมีประจุบวกและมวลมากจึงสะท้อนกลับ การที่อนุภาคแอลฟาจำนวนน้อยมากสะท้อนกลับทำให้เชื่อว่านิวเคลียสมีขนาดเล็ก มาก
แบบจำลองอะตอมของโบร์
คลื่นและสมบัติของแสง
จากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดทำให้ทราบถึงการจัดโครงสร้างของอนุภาคต่าง ๆ ในนิวเคลียส แต่ไม่ได้อธิบายว่าอิเล็กตรอนรอบนิวเคลียสอยู่ในลักษณะใด นักวิทยาศาสตร์ในลำดับต่อมาได้หาวิธีทดลองเพื่อรวบรวมข้อมูลเกี่ยวกับ ตำแหน่งของอิเล็กตรอนที่อยู่รอบนิวเคลียส วิธีหนึ่งก็คือการศึกษาสมบัติและปรากฏการณ์ของคลื่นและแสง แล้วนำมาสร้างเป็นแบบจำลอง
คลื่นชนิดต่าง ๆ เช่น คลื่นแสง คลื่นเสียง มีสมบัติสำคัญ 2 ประการ คือ ความยาวคลื่นและความถี่
คลื่นแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นต่าง ๆ กัน ดังรูปต่อไปนี้
แสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอแสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอบด้วยแสงสีต่าง ๆ กัน ตามปกติประสาทตาของคนสามารถสัมผัสแสงบางช่วงคลื่นที่ส่องมาจากดวงอาทิตย์ ได้ แต่ไม่สามารถแยกเป็นสีต่าง ๆ จึงมองเห็นเป็นสีรวมกันซึ่งเรียกว่า “แสงขาว”