แบบจำลองอะตอม
เป็นที่ยอมรับกันแล้วว่าสารต่าง ๆ นั้นประกอบด้วยอะตอม แต่อย่างไรก็ตามยังไม่มีผู้ใดเคยเห็นรูปร่างที่แท้จริงของอะตอม รูปร่างหรือโครงสร้างของอะตอมจึงเป็นเพียงจินตนาการหรือมโนภาพที่สร้างขึ้น เพื่อให้สอดคล้องกับการทดลอง เรียกว่า “แบบจำลอง” ซึ่งจัดเป็นทฤษฎีประเภทหนึ่ง แบบจำลองอะตอมอาจเปลี่ยนแปลงไปได้ตามผลการทดลองหรือข้อมูลใหม่ ๆ เมื่อแบบจำลองอะตอมเดิมอธิบายไม่ได้ ดังนั้นแบบจำลองอะตอมจึงได้มีการแก้ไขพัฒนาหลายครั้งเพื่อให้สอดคล้องกับการ ทดลอง นักวิทยาศาสตร์ได้ใช้กล้องจุลทรรศน์อิเล็กตรอนที่มีกำลังขยายสูงมากร่วมกับ คอมพิวเตอร์ และถ่ายภาพที่เชื่อว่าเป็นภาพภายนอกของอะตอม
อะตอมของของทองคำถ่ายภาพด้วยกล้องจุลทรรศน์อิเล็กตรอน
แบบจำลองอะตอมของดอลตัน
|
| ในปี พ.ศ.2346 (ค.ศ.1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ ชาวอังกฤษได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสาร ก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสาร ประกอบ ซึ่งสรุปได้ดังนี้ |
แบบจำลองอะตอมของดอลตัน
แบบจำลองอะตอมของทอมสัน
|
| เซอร์ โจเซฟ จอห์น ทอมสัน (J.J Thomson) นักวิทยาศาสตร์ชาวอังกฤษได้สนใจปรากฏการณ์ที่เกิดขึ้นในหลอดรังสีแคโทด จึงทำการทดลองเกียวกับการนำไฟฟ้าของแก๊สขึ้นในปี พ.ศ. 2440 (ค.ศ. 1897) และได้สรุปสมบัติของรังสีไว้หลายประการ ดังนี้ |
หลอดรังสีแคโทด ปรากฏการณ์ที่เกิดขึ้นในหลอดรังสีแคโทด รังสีแคโทดเดินทางเป็นเส้นตรงจากขั้วแคโทดไปยังขั้วแอโนด
รังสีแคโทดบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า |
| จากผลการทดลองนี้ ทอมสันอธิบายได้ว่า อะตอมของโลหะที่ขั้วแคโทดเมื่อได้รับกระแสไฟฟ้าที่มีความต่างศักย์สูงจะ ปล่อยอิเล็กตรอนออกมาจากอะตอม อิเล็กตรอนมีพลังงานสูง และเคลื่อนที่ภายในหลอด ถ้าเคลื่อนที่ชนอะตอมของแก๊สจะทำให้อิเล็กตรอนในอะตอมของแก๊สหลุดออกจาก อะตอม อิเล็กตรอนจากขั้วแคโทดและจากแก๊สซึ่งเป็นประจุลบจะเคลื่อนที่ไปยังขั้ว แอโนด ขณะเคลื่อนที่ถ้ากระทบฉากที่ฉาบสารเรืองแสง เช่น ZnS ทำให้ฉากเกิดการเรืองแสง ซึ่งทอมสันสรุปว่ารังสีแคโทดประกอบด้วยอนุภาคที่มีประจุลบเรียกว่า “อิเล็กตรอน” และ ยังได้หาค่าอัตราส่วนประจุต่อมวล (e/m) ของอิเล็กตรอนโดยใช้สยามแม่เหล็กและสนามไฟฟ้าช่วยในการหา ซึ่งได้ค่าประจุต่อมวลของอิเล็กตรอนเท่ากับ 1.76 x 10 8 C/g ค่าอัตราส่วน e/m นี้จะมีค่าคงที่ ไม่ขึ้นอยู่กับชนิดของโลหะที่เป็นขั้วแคโทด และไม่ขึ้นอยู่กับชนิดของแก๊สที่บรรจุอยู่ในหลอดรังสีแคโทด แสดงว่าในรังสีแคโทดประกอบด้วยอนุภาคไฟฟ้าที่มีประจุลบเหมือนกันหมดคือ อิเล็กตรอน นั่นเอง ทอมสันจึงสรุปว่า “อิเล็กตรอนเป็นส่วนประกอบส่วนหนึ่งของอะตอม และอิเล็กตรอนของทุกอะตอมจะมีสมบัติเหมือนกัน”
การค้นพบโปรตอน ในปี พ.ศ. 2409 (ค.ศ. 1866) ออยเกน โกลด์ชไตน์ นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองโดยเจาะรูที่ขั้วแคโทดในหลอดรังสีแคโทด พบว่าเมื่อผ่านกระแสไฟฟ้าเข้าไปในหลอดรังสีแคโทดจะมีอนุภาคชนิดหนึ่งเคลื่อน ที่เป็นเส้นตรงไปในทิศทางตรงกันข้ามกับการเคลื่อนที่ของรังสีแคโทดผ่านรูของ ขั้วแคโทด และทำให้ฉากด้านหลังขั้วแคโทดเรืองแสงได้ โกลด์ชไตน์ได้ตั้งชื่อว่า “รังสีแคแนล” (canal ray) หรือ “รังสีบวก” (positive ray) สมบัติของรังสีบวกมีดังนี้ “อะตอม เป็นรูปทรงกลมประกอบด้วยเนื้ออะตอมซึ่งมีประจุบวกและมีอิเล็กตรอนซึ่งมี ประจุลบกระจายอยู่ทั่วไป อะตอมในสภาพที่เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ” แบบจำลองอะตอมของทอมสัน
การหาประจุและมวลของอิเล็กตรอน |
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
|
| ในปี พ.ศ.2453 (ค.ศ.1910)เซอร์ เออร์เนสต์ รัทเทอร์ฟอร์ด (Sir Ernest Rutherford) ได้ศึกษาแบบจำลองอะตอมของทอมสัน และเกิดความสงสัยว่าอะตอมจะมีโครงสร้างตามแบบจำลองของทอมสันจริงหรือไม่ โดยตั้งสมมติฐานว่า |
ถ้าแบบจำลองอะตอมของทอมสันถูกต้อง เมื่อยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ นี้ อนุภาคแอลฟาควรพุ่งทะลุผ่านเป็นเส้นตรงทั้งหมดหรือเบี่ยงเบนเพียงเล็กน้อย เพราะอนุภาคแอลฟามีประจุบวกจะเบี่ยงเบนเมื่อกระทบกับประจุบวกที่กระจายอยู่ ในอะตอม แต่แบบจำลองอะตอมของทอมสันอธิบายผลการทดลองของรัทเทอร์ฟอร์ดไม่ได้ รัทเทอร์ฟอร์ดจึงเสนอแบบจำลองอะตอมขึ้นมาใหม่ดังนี้
แบบจำลองอะตอมของรัทเทอร์ฟอร์ท การอธิบายโครงสร้างอะตอมด้วยแบบจำลองอะตอมของรัทเทอร์ฟอร์ด
|
แบบจำลองอะตอมของโบร์
คลื่นและสมบัติของแสง |
จากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดทำให้ทราบถึงการจัดโครงสร้างของอนุภาคต่าง ๆ ในนิวเคลียส แต่ไม่ได้อธิบายว่าอิเล็กตรอนรอบนิวเคลียสอยู่ในลักษณะใด นักวิทยาศาสตร์ในลำดับต่อมาได้หาวิธีทดลองเพื่อรวบรวมข้อมูลเกี่ยวกับ ตำแหน่งของอิเล็กตรอนที่อยู่รอบนิวเคลียส วิธีหนึ่งก็คือการศึกษาสมบัติและปรากฏการณ์ของคลื่นและแสง แล้วนำมาสร้างเป็นแบบจำลอง
คลื่นชนิดต่าง ๆ เช่น คลื่นแสง คลื่นเสียง มีสมบัติสำคัญ 2 ประการ คือ ความยาวคลื่นและความถี่
คลื่นแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นต่าง ๆ กัน ดังรูปต่อไปนี้
แสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอแสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอบด้วยแสงสีต่าง ๆ กัน ตามปกติประสาทตาของคนสามารถสัมผัสแสงบางช่วงคลื่นที่ส่องมาจากดวงอาทิตย์ ได้ แต่ไม่สามารถแยกเป็นสีต่าง ๆ จึงมองเห็นเป็นสีรวมกันซึ่งเรียกว่า “แสงขาว”